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22 years ago today, Karmali and colleagues published a
report on sporadic cases of haemolytic uraemic syndrome
(HUS) associated with faecal cytotoxin and cytotoxin-
producing Escherichia coli in stools.1 This paper not only
was a seminal contribution to microbiology, but also
clarified aetiological thought about the problem of
postdiarrhoeal HUS. Karmali and colleagues found a
toxin lethal to cultured African green monkey (Vero)
kidney cells in stools of children with postdiarrhoeal
HUS. This toxic property was attributed to E coli of
various serotypes, including O157:H7. Such cytotoxin-
producing organisms had previously been isolated from
human beings and foods.2 A week after that paper was
published, Riley and co-workers3 described two clusters of
patients with painful bloody diarrhoea, linked by the
common consumption of undercooked hamburgers;
many of the patients in these clusters had E coli with a rare
serotype (O157:H7) in their stools. Soon afterwards,
O’Brien and colleagues associated the toxic property of
E coli O157:H7 with that of Shigella dysenteriae serotype 1.4

These observations formed the basis for our current
understanding of postdiarrhoeal HUS and have prompted
multidisciplinary efforts to prevent and treat infections
caused by this virulent group of E coli.

HUS causes acute renal failure in children worldwide.5

In the form most commonly encountered in children,
HUS follows gastrointestinal infection with Shiga-toxin-
producing E coli (STEC), the group of organisms
incriminated by Karmali and colleagues.1 HUS is a
thrombotic disorder, characterised by microvascular
thrombi (figure 1) and swollen endothelial cells.6–10 STEC
expressing somatic (O) antigen 157 and flagellar (H)
antigen 7 are the serotype most frequently isolated from
human beings, and the serotype with the strongest and
most enduring aetiological association with HUS.
However, at least during certain periods, non-O157:H7
STEC appear to be more common causes of HUS in
Australia,11 Germany, and Austria.12

This review focuses on the historical features,
epidemiology, microbiology, pathophysiology, and treat-
ment of STEC-associated HUS. Most data pertain

predominantly to E coli O157:H7 infections, because
detailed clinical data on HUS caused by non-O157:H7
strains are scarce. We emphasise diagnostic and thera-
peutic options during the phase preceding HUS, because
management of the HUS phase remains largely
supportive, and address differences between STEC-
associated HUS and other thrombotic microangiopathies.

History  
The early history of HUS has been well described.13 The
term was first used by von Gasser and colleagues in a
paper published in 1955, which described a case-series of
five children with small-vessel renal thrombi, thrombo-
cytopenia, and non-immune (ie, Coombs-negative)
haemolytic anaemia.14 However, the prodromal phases
were not sufficiently characterised to allow assessment of
whether STEC were the likely precipitants. We have also
found a report about a British soldier who died after
dysenteric symptoms in Salonika, Greece, in 1918; his
histopathological lesions could conceivably have been
caused by HUS associated with Shiga-toxin-producing
bacteria.15

As early as 1965, Barnard and Kibel16 proposed that
enteric E coli infections might precipitate HUS (though,
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Most cases of diarrhoea-associated haemolytic uraemic syndrome (HUS) are caused by Shiga-toxin-producing

bacteria; the pathophysiology differs from that of thrombotic thrombocytopenic purpura. Among Shiga-toxin-

producing Escherichia coli (STEC), O157:H7 has the strongest association worldwide with HUS. Many different

vehicles, in addition to the commonly suspected ground (minced) beef, can transmit this pathogen to people.

Antibiotics, antimotility agents, narcotics, and non-steroidal anti-inflammatory drugs should not be given to acutely

infected patients, and we advise hospital admission and administration of intravenous fluids. Management of HUS

remains supportive; there are no specific therapies to ameliorate the course. The vascular injury leading to HUS is

likely to be well under way by the time infected patients seek medical attention for diarrhoea. The best way to prevent

HUS is to prevent primary infection with Shiga-toxin-producing bacteria.

Search strategy and selection criteria

We searched the PubMed database with the terms:
“h(a)emolytic ur(a)emic syndrome and pathogenesis”,
“h(a)emolytic ur(a)emic syndrome and pathophysiology”,
“h(a)emolytic ur(a)emic syndrome and epidemiology”, and
“O157”. We included only studies that, in our joint opinion,
met the following criteria: the HUS was plausibly or definitely
caused by an STEC; the assays to examine the abnormalities
were appropriate; sufficient numbers of participants were
included for conclusions to be drawn; and the studies were,
ideally, based on the general population. Personal observations,
selected instructive historical articles, and microbiological, 
in-vitro, animal, and pathophysiological studies are also
included, based on our knowledge of their existence.
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of course, without knowledge of the existence of STEC).
In 1975, Kaplan and colleagues reported intrafamilial
synchronous clustering of HUS cases in endemic areas
and inferred an environmental, presumably infectious,
precipitant.17

The following general statements can be made about
STEC and associated HUS. First, most cases of
postdiarrhoeal HUS are caused by STEC or, in regions
such as south Asia, S dysenteriae serotype 1.18 Other
shigellae do not cause HUS because virtually none
produce Shiga toxin. Second, E coli O157:H7 is the most
common, even predominant, cause of HUS in most of the
world, the STEC most likely to cause epidemics, and the
STEC serotype most commonly associated with human
gastrointestinal infection. Third, a subset of non-O157:H7
STEC are pathogens, but strategies to detect these strains

in clinical practice and the implications of finding them
remain incompletely defined. Fourth, ground (minced)
beef is by no means the only vehicle that can transmit E
coli O157:H7. Finally, HUS treatment remains
supportive, probably because the pathophysiological
insult that triggers this disorder occurs early in illness and
is not sustained, and the precise cellular mechanisms
leading to renal injury are undefined. Fortunately, most
children recover from HUS.

Nomenclature and syndromic definitions  
Confusing nomenclature has developed surrounding
diarrhoeagenic E coli. Definitions for E coli capable of
causing HUS and other diseases via production of Shiga
toxin are summarised in table 1.

We have defined HUS stringently, by use of the
following criteria: packed-cell volume less than 30% with
evidence of erythrocyte destruction on peripheral-blood
smear; platelet count less than 150 � 109/L; and serum
creatinine above the upper limit for age,7,28–30 in patients
without other reasons for coagulopathy, such as
septicaemia. In postdiarrhoeal HUS, circulating
fibrinogen concentrations are normal or high, and the
prothrombin time is only slightly prolonged, unlike
classic disseminated intravascular coagulation.31 We do
not believe that abnormal results of urine analysis, in the
absence of azotaemia, should be used to define HUS. As it
pertains to this review, HUS is a complication of infection
with Shiga-toxin-producing bacteria, although other
infections, such as pneumococcal pneumonia,32 and
inheritable abnormalities in complement regulatory
proteins33–36 can cause the disorder. Idiopathic thrombotic
thrombocytopenic purpura (TTP) includes thrombotic
microangiopathies in which there is an acquired inhibitor
of the von Willebrand factor metalloprotease.37,38 This
protease was recently identified as  a particular member of
the ADAMTS family—namely ADAMTS13.39 Mutations
in ADAMTS13 also cause an autosomal recessive,
congenital form of TTP, also known as Upshaw-
Schulman syndrome. Although the cause of thrombotic
microangiopathy might not be immediately apparent
from the clinical presentation, HUS, congenital TTP, and
idiopathic TTP are caused by distinct pathological
mechanisms. The imprecise term HUS/TTP should be
abandoned, because current evidence indicates that TTP
and HUS differ in pathogenesis, and they do not
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Figure 1: Renal lesion in fatal HUS
Thrombus (arrow) in a glomerular arteriole in a child who died with fulminant
postdiarrhoeal HUS.

Type of Shiga toxin Definition

Shiga toxin (Stx) Main extracellular cytotoxin produced by S dysenteriae serotype 119 and rarely by other shigellae.20

Shiga toxins 1 and 2 Families of toxins produced by E coli. Members of Stx1 family are highly homologous to Stx. Stx2 is 58% identical to Stx1 at the aminoacid level and 56% identical at the 
nucleotide level.19,21 Stx1 and Stx2 are synonymous with Shiga-like toxins 1 and 2, verotoxins 1 and 2, and verocytotoxins 1 and 2, respectively. Human STEC produce 
Stx1 and Stx2 with one (Stx1c)22,23 or five (Stx2, Stx2c, Stx2d, Stx2e, and Stx2f) allelic variants.24–27 These allelic variants of Stx could have different pathogenic 
potentials.

STEC E coli that have genes encoding one or more Shiga toxins. Synonymous with verotoxigenic, verocytoxin-producing, or verocytotoxigenic E coli (VTEC).
Enterohaemorrhagic E coli (EHEC) Subset of STEC that are pathogenic to human beings. Most carry an eae allele, encoding intimin.

Table 1: Definitions of Shiga toxins and the organisms that produce them
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encompass all forms of thrombotic microangiopathies.
When the underlying cause of disease is uncertain, the
term thrombotic microangiopathy is sufficient, appro-
priate, and preferable.

Epidemiology  
A massive outbreak of E coli O157:H7 infections caused
by consumption of poorly cooked ground beef at many
outlets of a fast-food restaurant chain in the western
USA 12 years ago40 raised public and medical awareness
of STEC. However, this outbreak and others produced
two misconceptions: that E coli O157:H7 chiefly causes
large epidemics, and that ground beef is its predominant
vehicle. In fact, most cases are sporadic or occur in small
clusters, and ground beef is commonly not the vehicle
(panel 1).41–52 Exposure inquiries do not aid management
of patients, owing to the variety and ubiquity of possible
sources of this pathogen. Moreover, such questioning
can potentially introduce biases that complicate
subsequent interviews by public-health officers. The best
policy, we believe, is to report cases to local disease-
investigation officers expeditiously and to defer source
tracing to them.

In the northern hemisphere, there is a rough
correlation between distance from the equator and
frequency of HUS53–56 and rates of isolation of E coli
O157:H7.57 The correlation is not absolute; for example,
Scotland has a high incidence of HUS and E coli
O157:H7 infections,58 but Denmark does not.59 In the
southern hemisphere, Buenos Aires in Argentina has a
very high incidence of HUS.60

The incidence of diagnosed E coli O157:H7 infections
in the USA is greater among rural than urban
populations (Mead P, Centers for Disease Control and
Prevention; personal communication). In Scotland,
rural residents have been thought to be at greater risk of
exposure to E coli O157:H7 than urban residents because
of greater exposure to animals or animal excreta.61 Visits
to dairy farms have been implicated as likely acquisition

sites for infections in Finland62 and the USA.47

Transmission from cattle to people might be airborne.52

North American seroepidemiological surveys63,64 have
shown higher frequencies of antibodies to the O157
lipopolysaccharide among residents of rural areas than
among people who live in urban areas.

Rates of E coli O157:H7 infections in countries lacking
diagnostic capabilities are probably underestimated. For
example, several reports from Africa65,66 have shown that
large outbreaks can occur; without diagnostic
capabilities, these epidemics can be overlooked.

Most E coli O157:H7 infections and HUS occur in the
summer and autumn.12,17,54,57,67,68 Non-O157:H7 STEC
infections in Australia11 and Montana, USA,69 had
similar seasonality but this pattern did not occur in
Seattle, USA.67 The incidence of HUS probably
increased in several regions during the 1970s and
1980s,70,71 but increasing or decreasing trends have not
been proven unequivocally, and one population-based
study found stable incidence during the 1990s.53 A
reported lower likelihood that children of African
descent would have HUS16,55 was not confirmed in recent
series from Natal72 and North America.54,73 We
emphasise, however, that the risk of developing HUS
relates also to consumptions and behaviours leading to
acquisition of infection, so demographic differences in
incidence might reflect demographic differences in
exposure to the causative agent, rather than differences
in genetic propensity to develop HUS once infected.

Diagnostic and molecular microbiology  
The predominant cause of HUS in most of the world is
E coli O157:H7, which can best be detected by plating of
fresh faeces on sorbitol-MacConkey agar.74 This agar has
sorbitol, not lactose, as a carbon source. Unlike most
human faecal E coli, O157:H7 strains cannot ferment
sorbitol after overnight incubation on sorbitol-MacConkey
agar, and they therefore appear as colourless colonies
(figure 2). Commercial tests for the identification of these
and other STEC include direct detection of Shiga toxin,67,75

which has the advantage of leading to the identification of
non-O157:H7 STEC, and an immunodiffusion card that
detects E coli O157:H7 at the point of care.76

Diagnostic approaches for STEC need to take into
account the risk that the organism identified is a
pathogen, and, in that case, whether that organism has a
reasonable likelihood of precipitating HUS. The ideal
detection method for E coli O157:H7 is culture of the
stool on sorbitol-MacConkey agar, accompanied by a
Shiga-toxin detection assay, done on a broth culture of
the stool. Even though most patients with E coli infection
report grossly bloody stools,40,57,77 laboratory workers
commonly fail to perceive blood in the submitted
samples.57,67 Therefore, visual inspection of the stool in
the microbiology laboratory is inadequate for assessment
of whether a sample should be tested for STEC; we
believe that screening of all submitted stools for E coli
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Panel 1: Vehicles of transmission of E coli O157:H7, and
examples of seminal, large, or well-documented clusters

Ground beef 3

Municipal water41

Swimming water42

Deer jerky43

Unpasteurised milk44

Salami45

Lettuce46

Bovine contact47

Radish sprouts48

Unpasteurised apple cider49

Daycare centres50 and person-to-person contact40

Salmon roe51

Airborne transmission52
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O157:H7 by use of sorbitol-MacConkey agar maximises
the ability to detect this pathogen.

Use of Shiga-toxin detection as a hierarchical test rather
than sorbitol MacConkey agar is appealing, because the
former has the potential to detect both O157:H7 and non-
O157:H7 STEC . However, we believe such a protocol has
several drawbacks. First, detection of Shiga toxin will
identify many patients infected with non-O157:H7 STEC
in whom the course is less likely to result in HUS,57,78 and
antigen detection and even cytotoxicity assays might not
identify all allelelic variants of Shiga toxin.22,24 Second, a
sequential approach, in which the pathogenic STEC is
sought only after a non-culture test suggests its presence,
delays the transfer to outbreak investigators of E coli
O157:H7, which will be the causative agent in most of the
world. These investigators need to obtain isolates
expeditiously to establish or refute epidemiological
associations by use of molecular typing.79,80 Third, sorbitol-
MacConkey agar could be more sensitive than detection
of Shiga-toxin antigen for E coli O157:H7.67

We emphasise that HUS can, nevertheless, follow non-
O157:H7 STEC infections and that such infections are
almost certainly underdetected. There have been several
reports on the clinical course of HUS after non-O157:H7
STEC infections.11,12,81–83 In the one study that compared
cases of HUS after O157:H7 and after non-O157:H7
STEC infections, the former group had a more severe
course.12 However, an unknown proportion of sorbitol-
fermenting enterohaemorrhagic E coli, which would be
overlooked on a SMAC agar plate, probably has
pathogenic potential similar to that of E coli O157:H7.

Sorbitol-fermenting E coli O157:H� exemplify the
challenge of detecting non-O157:H7 STEC. This serotype,
though closely related to E coli O157:H7 that does not

ferment sorbitol, necessitates complex detection methods,
because it is not distinguishable on sorbitol-MacConkey
agar, and because existing data suggest that these
organisms are no less virulent than E coli O157:H7.84

Identification of such an organism in a microbiology
laboratory would necessitate toxin assays or detection of
unique genetic loci.85

The ability to produce Shiga toxin is the key virulence
trait of STEC. Shiga toxins are A1B5 toxins. The B subunit
binds to a glycosphingolipid on the surface of eukaryotic
cells, and the A subunit is an N-glycosidase, which
inhibits protein synthesis and disrupts the large
eukaryotic ribosomal subunit in a similar way to ricin.86

Shiga toxins also induce apoptosis in human renal cells
and tissue.87,88 They have additional and diverse effects on
endothelial and other eukaryotic cells.89 Most E coli
O157:H7 carry the gene encoding Stx2, and about two-
thirds have the gene encoding Stx1.57,67

Enterohaemorrhagic E coli produce factors other than
Shiga toxin that could plausibly injure human hosts.
Intimin,90 through which E coli mediates intimate
attachment to epithelial cells in vitro and in animal
models,91 is one of the best characterised and most
important non-Shiga-toxin virulence traits. Other non-
Shiga-toxin molecules that might cause some of the
manifestations of STEC infections include StcE, which
inhibits C1 esterase inhibitor,92 subtilase cytotoxin
produced by E coli O113:H21,93 and cytolethal distending
toxin.94 As newly discovered genes in STEC are
characterised, additional non-Shiga-toxin virulence traits
are likely to come to light.

Clinical course and postulated mechanisms of
pathogenesis  
Figure 3 shows the aggregate clinical course of E coli
O157:H7 infections. The interval between ingestion of a
contaminated vehicle and the onset of diarrhoea ranges
between 2 days and 12 days.3,40 In a well-analysed
epidemic, the mean incubation period before the first
loose stool was 3·7 days and the median 3 days.40

Typically, E coli O157:H7 infections cause 1–3 days of
non-bloody diarrhoea after which the diarrhoea becomes
bloody.77 The bloody diarrhoea, which occurs in about
90% of cases, is generally the sign that prompts patients
or their families to seek medical attention. The colon can
be quite severely affected (figure 4). However, mild
infections can occur,95 and E coli O157:H7 have been
recovered from the stools of patients with HUS who
have no diarrhoea.96,97 Postsymptomatic shedding of
E coli O157:H7 could lead to community spread of
infection,50 but the greatest period of transmissibility is
probably during the acute diarrhoea phase.

Several clues help clinicians differentiate E coli
O157:H7 infections from colitis caused by other
bacteria. Most patients with E coli O157:H7 are afebrile
when investigated in a medical setting,30 even though
about half of all infected patients report fever before
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Figure 2: E coli O157:H7 on a sorbitol-MacConkey agar plate
Arrow indicates distinctive colourless E coli O157:H7 colony.
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assessment. Leucocytes are found in only about half of
examined faecal samples and are rarely described as
abundant if they are present.57,67 The abdominal pain is
greater than is generally seen in other forms of bacterial
gastroenteritis, physicians commonly note abdominal
tenderness during their examination,57,67 and defecation
tends to be painful.

Management of patients with bloody diarrhoea
and possible or definite E coli infection  
Patients with acute bloody diarrhoea, and especially
those in whom no fever is documented in a medical
setting, and those with very painful diarrhoea should be
considered to have possible E coli O157:H7 infection. We
encourage hospital admission of such patients if for no
other reason than for infection control; application of
contact precautions98 to acutely infected inpatients, while
allowing other infected patients to remain in the
community where the risk spreading this potentially
lethal pathogen is much higher, is inconsistent.

We believe that intravenous rehydration and mainte-
nance fluid provide optimum nephroprotection, as
shown by the association between parenteral volume
expansion before the development of HUS, and
attenuated renal injury during HUS;99 we recommend
use of isotonic crystalloid for volume expansion and
maintenance.100 Standard rehydration protocols, which
consist of volume repletion followed by replacement of
continuing stool losses, and provision of maintenance
fluid with hypotonic solutions, might be inadequate for
STEC infections. There is likely to be vascular leakage,
the extent of which cannot be accurately taken into
account in assessment of fluid requirements. We observe
oedema in many infected patients, whether or not their
infection progresses to HUS, and the oedema can

confound attempts to assess hydration status. For these
reasons, we infuse more sodium during the diarrhoeal
phase than is generally used to support volume during
gastroenteritis, but we also insist that infected patients
are admitted to institutions that can monitor closely for
signs of cardiovascular overload (panel 2).99,100

Antibiotics should not be administered to patients with
definite or possible enteric STEC infections. In the 1993
outbreak in Washington state,101 antibiotics administered
early in illness were not associated with a diminished risk
of development of HUS. In a prospective study in the
Pacific Northwest, children infected with E coli O157:H7
who were treated with antibiotics had a higher rate of
HUS.30 Antibiotics might also increase the risk of HUS
in adults.102 The mechanisms by which antibiotics
increase the risk of HUS remain unknown, but they
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Figure 3: Progression of E coli O157:H7 infections in children
About 3 days after ingestion of the organism, the patient develops diarrhoea,
abdominal pain, fever, and vomiting. The diarrhoea becomes bloody 1–3 days
later, rarely on the first day. In 80–90% of infected children with positive
cultures, visible blood is present in the stools. When bloody diarrhoea first
develops, the patient has a normal platelet count, creatinine concentration, and
packed-cell volume, with no red-cell fragmentation. However, if studies of the
coagulation and fibrinolytic systems are done early in the illness, there is
evidence that thrombin generation is increased, fibrin deposition is occurring,
and plasminogen activation is suppressed.29

Figure 4: Radiographic features of E coli O157:H7 infection
A: radiograph after barium enema with thumbprinting appearance of mucosa
(arrows), suggesting colonic oedema, in a patient who subsequently developed
HUS. B: CT of the pelvis of an 8-year-old boy on day 8 of an E coli O157:H7
infection. Note severely thickened colon (circled). This infection did not progress
to HUS.
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could involve bacterial lysis, thereby liberating Shiga
toxin,103 or induction of bacteriophages on which stx
genes are located, with subsequently increased
production of the toxin.104

A 2002 meta-analysis implied that antibiotic therapy of
E coli O157:H7 infections might not be harmful.105 We
believe that conclusion was flawed because the inferred
beneficial effect of antibiotics depended largely on a
single study that associated fosfomycin administration,
at selected times in the illness, with a lessened risk of
development of HUS.106 In that particular study,
fosfomycin was compared only with other antibiotics,
but the meta-analysis mischaracterised fosfomycin as
being superior to no antibiotics.107

Similarly, we recommend that antimotility agents, or
narcotics in any form, should not be given to patients
with bloody diarrhoea or with definite STEC infections,
because these agents have also been associated with an
increased risk of development of HUS or neurological
complications of the disorder.101,108 We also advise against
use of non-steroidal anti-inflammatory agents, because
they can diminish renal blood flow.109 We have noted that
volume repletion with intravenous isotonic crystalloids
can, in many cases, ameliorate abdominal pain during
the diarrhoea phase.

An appealing approach is consideration of oral therapy
against Shiga toxin to prevent the development of HUS
in infected patients, but recent evidence suggests that
such an intervention would be futile. First, most infected
children do not have a demonstrable reservoir of toxin in

stool, despite having about 107 viable E coli O157:H7 per
g of stool.28 Second, by day 4 of illness, vascular injury is
well under way,29,110 and much toxin-related vascular
damage has probably already occurred. Third, orally
administered toxin binder failed to attenuate the severity
of HUS when administered to children presumed to be
infected with STEC.111

Onset of HUS  
The risk that a child younger than 10 years with a
diagnosed E coli O157:H7 infection will develop HUS is
about 15%.29,30,77,101,112 The case definition of HUS is
typically attained between days 5 and 13 of illness, with
day 1 being the first day of diarrhoea; the median is
about a week after the onset of diarrhoea.29,30 As E coli
O157:H7 infections evolve into HUS, thrombocytopenia
is the first abnormality in most patients. Haemolysis,
presumably from physical injury to erythrocytes from
passing through nascent thrombi in small vessels,
generally precedes azotaemia, but in some cases we have
observed that the creatinine concentration begins to rise
a day or two before the packed-cell volume decreases.

We rarely request urine analyses during E coli
O157:H7 infections, because a cleanly voided specimen
can be very difficult to obtain during diarrhoea,
especially in children. We are also very concerned about
bladder catheterisation because of the risk of
introducing STEC into the urinary system. Moreover,
the finding of urinary abnormalities, even if genuine,
would not be clinically helpful. A raised creatinine
concentration, in combination with clinical monitoring,
is sufficient to guide management before and at the
onset of HUS.

Some risk factors, such as raised white-blood-cell
count, early presentation to care, antibiotic administra-
tion, use of antimotility agents, and age under 10 years,
are associated with increased risks of development of
HUS.30,101,113 However, there are no formulae or factors
that can be used to exclude the possibility of this outcome
in assessment of infected patients of any age. Therefore,
all infected patients must be considered at risk of HUS,
until the platelet count is definitely rising. In almost all
children studied sequentially during the first week of
illness, we observe a fall in the platelet count. This
decrease is possibly related to volume expansion, or,
more likely, to consumption of thrombocytes, because
prothrombotic processes occur in many patients even
without the subsequent development of HUS. In most
cases, an unequivocal reversal of the falling platelet count
will occur within a week of the onset of diarrhoea. At that
point, administration of parenteral fluids should be
discontinued and discharge considered, unless other
issues require a continued stay in hospital. A few patients
have stable (ie, not rising) platelet counts as diarrhoea
abates, but discharge can safely be considered in these
patients also. We do, however, attempt to obtain a blood
count and chemistry results on the day after discharge in
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Panel 2: Management of patients with suspected or confirmed E coli O157:H7 infections

Do not give antibiotics, antimotility agents, narcotic opioids, or non-steroidal 
anti-inflammatory drugs.
Bolus with intravenous normal saline, 20 mL/kg, on presentation, if there is no evidence
of cardiopulmonary overload.
Continue intravenous maintenance fluid in the form of isotonic crystalloid (normal saline,
normal saline with 5% dextrose, or lactated Ringer’s solution), and not hypotonic
crystalloid.
Potassium can be added to the intravenous fluids if the serum potassium concentration is
normal or low.
Most patients can eat or drink ad libitum, though appetite tends to be diminished during
the acute infection.
Repeat boluses of normal saline (10–20 mL/kg) if there is any question of diminished
urine output, and the patient is not showing signs of central volume overload.
Daily laboratory tests should include complete blood count, electrolytes, and serum urea
nitrogen and creatinine concentrations.
The patient should be admitted to an institution skilled in the age-appropriate
monitoring of fluid status.
The HUS risk period is past when the platelet count rises, or if the platelet count is stable,
and symptoms are resolved or resolving. We also repeat laboratory tests 1 day after
discharge.
As the creatinine concentration rises, patients should be monitored even more
assiduously for hypertension or signs of cardiopulmonary overload and transferred, if
necessary, to a centre where acute renal failure can be managed and treated.
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all patients, to confirm that improvement is sustained. If
the platelet count is stable or increasing, mild post-
discharge increments in serum urea or creatinine
concentrations can be overlooked. There is rarely a need
to undertake laboratory tests after an improving trend in
the platelet count is clearly shown, even if the interval of
risk is not yet past.

In our experience, the rate of development of partial or
incomplete HUS112,114 is roughly the same as that of
complete HUS among infected children. Such children
have thrombocytopenia, with or without anaemia (defined
as above), but the serum creatinine concentration
remains normal. We have occasionally needed to
transfuse erythrocytes into patients with symptomatic
anaemia but no renal insufficiency.

Pathophysiology of HUS  
Enteric STEC infections are almost never accompanied
by bacteraemia. Presumably, systemic complications,
such as HUS, arise from lesions caused by circulating
Shiga toxin. In fact, early in the course of these non-
bacteraemic infections, there are prothrombotic
coagulation abnormalities29 similar to those observed
several days later when HUS develops.115–118 Further-
more, in animals, colitis can be caused by parenterally
administered Shiga toxin.119–121 Perhaps the bloody
diarrhoea, and possibly even the diarrhoea,122 are caused
by mesenteric ischaemia initiated by circulating Shiga
toxin, rather than by direct STEC injury of the intestinal
epithelium. Interactions between Shiga toxin and
circulating leucocytes and platelets could also have roles
in pathogenesis.123–128

Shiga toxins bind to the glycosphingolipid globotriao-
sylceramide,129 which occurs on renal glomerular
endothelial, mesangial, and tubular epithelial cells.130–133

Shiga toxin has been identified bound to renal sections
taken after death from infected children who died of
HUS,134 and cellular differences in expression of globo-
triaosylceramide might underlie organ-specific
responses to circulating Shiga toxin.135 The lack of a
suitable animal model of HUS after enteric challenge
with an STEC, which possibly relates to inter-species
differences in expression of globotriaosylceramide,136

poses challenges to investigators attempting to elucidate
these early cellular events after enteric colonisation. For
this reason, infected human beings must be studied for
characterisation of the cascade leading from gastro-
intestinal infection to renal impairment.

The profound haematological abnormalities during
and before HUS and histopathological analyses show
that the basis of HUS is thrombotic, not vasculitic.6–10,137

Even if vascular occlusion is not the underlying major
lesion in HUS, thrombosis-independent thrombin-
mediated host mechanisms138 could cause renal injury
after E coli O157:H7 infections. The plasma of patients
with HUS shows fibrinolysis inhibition manifest by
increased activity of plasminogen activator inhibitor 1

(PAI-1),29,115,118 presumed increased intravascular
generation of fibrin, as shown by high concentrations of
D-dimers,29,117,118,139 and generation of thrombin, as
inferred from raised concentrations of fragment 1�2.29,115

On or before day 4 of diarrhoea, many patients infected
with E coli O157:H7 have similar abnormalities
(figure 5),29 even those who do not develop HUS.

Why one infected patient develops HUS and another
does not is unknown. Prothrombotic abnormalities
occur in many infected children, whether or not HUS
develops.29 Also, some infected children, even those who
do not develop HUS, have degraded von Willebrand
factor in plasma early in illness, probably representing
shear stresses on this molecule from thrombi in one or
more vascular beds.7 However, children with higher
concentrations of fragment 1�2, D-dimer, and 
PAI-1 when they initially present with diarrhoea have an
increased risk of developing HUS several days later,
even though their packed-cell volumes, platelet counts,
and serum creatinine concentrations are normal early in
illness. Thrombin generation, as reflected in
concentrations of fragment 1�2, does not increase
greatly during this interval.29 Though there is overlap
between values in children who develop HUS and those
whose infections resolve without complication, we
hypothesise that the development of HUS is related to
the degree of prothrombotic activation early in infection,
and to the intensity of the coagulation response that
subsequently develops. The endothelium is a likely
target of the absorbed Shiga toxin, but in-vitro data raise
the possibility that the toxin also injures monocytes,140,141

which can similarly mediate thrombotic responses.142

Common host prothrombotic alleles do not seem to have
major roles in the development of HUS.143

Patients do not seem to undergo systemic inflamma-
tory responses before HUS develops. They are rarely
febrile once bloody diarrhoea begins and are not
hypotensive, acidotic, or in shock. Nonetheless, there is a
strong possibility that at the cellular level proinflam-
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Figure 5: Proposed model for pathological coagulation response leading to
HUS
Shiga toxin injures endothelial cells during the first few days of infection,
possibly even before bloody diarrhoea occurs. Endothelial injury generates
thrombin, and fibrin is deposited in the microvasculature. Concentrations of
PAI-1 rise. PAI-1 blocks fibrinolysis, further accelerating the accumulation of
fibrin in vessels, and exacerbating the thrombotic injury. There may be additive
injurious effects of Shiga toxin on renal tubular cells.
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matory cytokines and chemokines act synergistically
with Shiga toxins to injure host cells.144 Evidence
pertinent to the pre-HUS phase of illness comes from
studies showing that Shiga toxins can activate various 
C-X-C chemokines in intestinal epithelial cells.145 STEC
flagellin also induces this response,146 and activates
epithelial-cell mitogen-activated protein (MAP) kinase
and nuclear factor �B pathways, resulting in secretion of
interleukin 8 by intestinal epithelial cells.147 E coli
O157:H7 abrogate Stat1-mediated interferon-� signal
transduction in cultured human intestinal epithelial
cells.148 Increased circulating concentrations of growth-
related oncogen �, macrophage inflammatory protein
1�, and monocyte chemotactic protein 1 are observed in
E coli O157:H7 infections, and concentrations of
granulocyte colony-stimulating factor are especially high
whereas those of epithelial-cell-derived neutrophil-
activatingprotein 78 are low during HUS.149

The Shiga-toxin genotype of the infecting strain is a
potential determinant of infection outcome, with
organisms that produce both Stx1 and Stx2 being
paradoxically less virulent than those that produce Stx2
but not Stx1;77 however, the association is far from
absolute.150 Also, expanding knowledge of allelic variants
of Stx2 make such analyses quite complex.24,69,151

Management of HUS  
As azotaemia develops in infected patients, the challenge
of management is to maintain renal perfusion while
avoiding deleterious fluid overload. A rising serum
creatinine concentration in an infected patient who is still
urinating might reflect a process that is destined to result
in renal shutdown, presumably acute tubular necrosis, in
which case fluid restriction is advisable, and dialysis is
probably inevitable. Alternatively, further volume
expansion might yet counteract the effects of a
thrombotic process where there is almost certainly renal
hypoperfusion. Furthermore, accurate assessment of
intravascular volume and achievement of a normal
volume are elusive goals in the face of vomiting,
diarrhoea, poor oral intake, hypoalbuminaemia, and
thrombosed, probably hyperpermeable, blood vessels.

Patients in all phases of HUS should be monitored
carefully and continuously for signs of fluid overload,
because their renal and vascular statuses are in flux, and
volume overload or depletion could exacerbate injury.
The weight and fluid balance of HUS patients should be
carefully measured daily. However, in the early stage of
HUS, weight gain does not necessarily mean
intravascular overload, because hypoalbuminaemia and
vascular leakage cause a diffusely oedematous state.

Technical features of the management of established
HUS have been well reviewed.152–155 At the first
indication of hypertension or cardiopulmonary
overload, fluids should be restricted. Diuretics,
sometimes given during early HUS, rarely avert anuria.
If their use does lead to urine production, intravascular

volume depletion might be inadvertently exacerbated,
and thrombus development facilitated; these processes
could further compromise renal blood flow. Use of
diuretics should be restricted to severe clinically
consequential central volume overload, but dialysis is
likely to be more effective. Vasodilators154 are the
preferred agents for the treatment of hypertension. We
avoid inhibitors of angiotensin-converting enzyme
because of our concern that they might exacerbate
kidney injury by diminishing renal perfusion.156 Most
patients with early renal insufficiency and a diminishing
urine output who do not respond to boluses of isotonic
crystalloid progress to oligoanuric renal failure. HUS
patients whose hourly urine output remains above
0·5 mL/kg beyond day 10 of illness (with the first day of
illness being the first day of diarrhoea) generally do not
become anuric.

Nephrotoxic medications should be stopped (they
should avoided, if possible, during the diarrhoea phase),
and the doses of drugs that are renally excreted should
be adjusted accordingly. Narcotics should be used with
caution, because their metabolites could cause seizures
during renal failure.157

Non-renal complications of HUS should be
anticipated;97 neurological complications are the most
ominous and are important determinants of morbidity
and mortality.158–160 Irritability, lethargy, and confusion
could be caused by fatigue, cerebral microvascular
thrombi, ischaemia–hypoxia, or the direct neuronal
effects of Shiga toxin; stroke (thromobotic or
haemorrhagic), seizures, and coma occur in about 10%
of patients.97,159 Cranial imaging should be used to assess
any true neurological complications.

Cardiac dysfunction was detected in about 10% of
children with HUS during the 1993 epidemic of E coli
O157:H7 in the western USA,97 and congestive heart
failure seems to be somewhat more common among
adults with HUS (PIT, unpublished). Raised
concentrations of troponin I during HUS should be
attributed to cardiac ischaemia, not azotaemia.161 The
most common pulmonary consequence is fluid overload
and pleural effusions, but adult respiratory distress
syndrome can also occur.97 Intestinal complications
during acute HUS consist of perforation and necrosis.
Acidosis that is not easily corrected by dialysis suggests
ischaemic or necrotic bowel; strictures and pigment
gallstones generally do not become apparent until after
resolution of HUS.162 Clinically significant pancreatitis
and glucose intolerance can occur during HUS, but
asymptomatic increases in serum concentrations of
amylase and lipase, which are quite common, are not
contraindications to enteral nutrition.

Oliguric or anuric patients might need potassium
restriction to prevent hyperkalaemia (though this
electrolyte abnormality is uncommon despite haemolysis
and renal failure) and phosphate restriction and
phosphate binders to prevent hyperphosphataemia.

1080 www.thelancet.com Vol 365   March 19, 2005 



Seminar

Sodium excess can contribute to oedema in hypoalbu-
minaemic states and can worsen hypertension. After
dialysis is initiated, diets can be less restricted. Patients
should receive appropriate calories for their age and size,
enterally or parenterally, and those on dialysis should also
receive appropriate vitamin supplementation.163

HUS patients can become profoundly and rapidly
anaemic, and the usual indications for erythrocyte
transfusion (largely cardiovascular or respiratory
compromise) apply; about 80% of patients with HUS
need erythrocyte transfusions.71,97 Blood transfusions
should, however, be administered cautiously, because
rapid intravascular expansion can cause hypertension.
Blood products should be volume-reduced and depleted
of leucocytes, if possible,154 and given slowly with
frequent monitoring of vital signs, preferably during
dialysis. We discourage platelet transfusions unless there
is clinically significant haemorrhage or invasive
procedures are being undertaken, because platelets could
conceivably exacerbate thromboses. Most patients do not
need iron to treat anaemia because the iron from
haemolysed cells should remain available for
erythropoiesis. Haemolysis can be the most persistent
abnormality as HUS resolves.

Indications for dialysis in HUS are similar to those in
other forms of acute renal failure: hyperkalaemia
(potassium concentration higher than 6·5 mmol/L with
electrocardiographic changes); serum urea concentrations
higher than 36 mmol/L (although azotaemia by itself as
an indicator for dialysis has been questioned);164 persistent
acidosis (bicarbonate concentration less than 10 mmol/L);
hypertension from volume overload not responding to
medical therapies; volume overload leading to cardiac or
respiratory compromise; oligouria or anuria as a limiting
factor for nutritional support; and the need for blood
transfusions in patients with poorly controlled
hypertension.154 The choice between haemodialysis and
peritoneal dialysis varies among specialists and centres.

Many approaches have been unsuccessful in HUS, and
are not commonly used today (panel 3).111,165–171 In the
absence of convincing evidence of their efficacy, we
discourage use of antithrombotic agents in children with
HUS, because the hypertension, thrombocytopenia, and
azotaemia might increase the risk of intracranial
bleeding. In one study,165 serum creatinine concentrations
fell slightly more rapidly in children who were assigned
corticosteroids than in those assigned placebo, but the
treatment group did not have a diminished rate of renal
failure or need for dialysis, and these agents are also not
commonly used during HUS. Plasma therapies have also
been studied in small groups of children with HUS.168–172

However, interpretation of these studies, which largely
did not demonstrate benefit, is difficult because the
aetiologies of the HUS cases were not well delineated or
the data were collected retrospectively.

Because the precipitating cause of postdiarrhoeal HUS
can now be identified in many cases, and infected children

can be studied, emerging data might focus intervention
strategies. For example, there is no theoretical justification
for plasma therapies in STEC-related HUS, because there
is no evidence that the thrombotic microangiopathy
results from ADAMTS13 deficiencies,7 or from any other
factor that can be removed or replaced by plasma
exchange. Also, the failure of Synsorb-Pk, an oral agent
that binds Shiga toxin, to ameliorate the course of HUS111

is not surprising in view of the paucity of free faecal toxin
in children with HUS after E coli O157:H7 infections.28 An
unresolved issue in consideration of antitoxin treatment
for STEC infections is whether Shiga toxin is accessible in
the gut, on cells, or free in the circulation, after patients
present, but before HUS ensues; if the toxin were present
and could be neutralised by antibodies or parenteral
synthetic toxin binders,173,174 injury might be lessened.
However, the presence of coagulation abnormalities early
in the illness29 suggests that the extraintestinal injury
cascade is already under way by the time of diagnosis, and
that antitoxin therapy might be too late. Attenuation of the
prothrombotic response before development of HUS is
another possible intervention.

There are many potential sequelae of childhood HUS,
but most long-term concerns relate to renal function.
Most survivors of a large outbreak in 1993 had good
renal function 5 years after infection.175 The severity of
the initial episode of HUS and the need for initial
dialysis are risk factors for long-term renal sequelae.176

Differentiation of Shiga-toxin-related HUS from
other thrombotic microangiopathies  
HUS and TTP have been classified as similar disorders
because of the common occurrence of thromboses.
However, idiopathic TTP is now known to be caused in
most cases by deficient ADAMTS13 activity, whereas
this activity is normal in HUS associated with E coli
O157:H7, when measured with an appropriate assay.7

Idiopathic TTP is distinct from thrombotic micro-
angiopathies, such as those associated with cancer,
infections, pregnancy, vasculitis, and use of ciclosporin.
Idiopathic TTP can be differentiated from STEC-
associated HUS by various criteria (table 2). HUS is
more frequently characterised by endothelial swelling
than is TTP, and glomerular thrombi in HUS patients
contain fibrin but little von Willebrand factor, also
suggesting that von Willebrand factor is not involved in
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Panel 3: Ineffective approaches in typical HUS

Corticosteroids165

Heparin166

Aspirin167

Dipyridamole167

Urokinase/streptokinase166

Plasmapheresis or plasma infusion168–171

Synsorb Pk111



Seminar

the evolution of the thromboses in STEC-associated
HUS.7 In contrast to idiopathic TTP, in which cleavage
of von Willebrand factor is impaired and pathogenetic
multimers cause platelet aggregation and thrombi,
during HUS associated with E coli O157:H7 there is
increased fragmentation of von Willebrand factor,
probably because this molecule is sheared as it passes
through small vessels containing fibrin thrombi.7

Plasma therapies are effective in idiopathic TTP because
they supply ADAMTS13 activity. Removal of inhibitory
antibodies probably also contributes to the efficacy of
plasmapheresis in TTP.

Diverse other disorders can resemble HUS, but
postdiarrhoeal HUS is actually a homogeneous and
recognisable illness178 that is generally distinguishable
from other thrombotic microangiopathies. However,
review of criteria that characterise STEC-related HUS is
useful. First, in almost all cases of HUS associated with
E coli O157:H7 there is preceding diarrhoea (though we
do recommend seeking faecal and urinary STEC during
the first thrombotic microangiopathic episode even if
diarrhoea is not present). Second, almost all patients
with this disorder have normal or slightly raised
fibrinogen concentrations and prolonged prothrombin
times.31 Third, HUS related to E coli O157:H7 can
recur,179 so a second postdiarrhoeal episode should not,
by itself, initiate a search for an inheritable or
autoimmune disorder. However, recurrent or non-
synchronous familial thrombotic microangiopathies,
especially if diarrhoea is absent, should prompt
investigations for precipitants other than an STEC (eg,
deficient ADAMTS13 activity or complement
abnormalities).

Recurrent or familial HUS has lately been attributed to
abnormalities in complement factor H,36 which
attenuates host injury from the alternative pathway of
complement,180 and factor I, which is a serine proteinase
that inhibits the alternative complement pathway
amplification loop, by cleaving the C3b a chain,35 or the
complement regulator, membrane cofactor protein
(CD46), which inhibits membrane bound C3b and C4b.34

However, any association between temporary
deficiencies in these factors, or allelic variants, and
STEC-associated HUS, is speculative at present.

Any child or adult presenting for the first time with a
thrombotic microangiopathy, but who does not have
diarrhoea, could still be infected with an STEC; such
patients should be investigated for the presence of an
STEC by microbiological analysis of the stool, as well as
of the urine.181
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