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Abstract 
 

Vanderweele and Knol define biological interaction as an instance wherein “two exposures 

physically interact to bring about the outcome.”  A hallmark of biological interaction is that the 

total effect, produced when factors act together, differs from the sum of effects when the factors 

operate independently. Epidemiologists construct statistical models to assess biological 

interaction. A consensus exists that biological interaction should be assessed as a departure from 

additivity of effects.  

 

This paper compares three statistical models’ assessment of biological interaction in a data 

example that appears in several epidemiology textbooks. A linear binomial model quantifies a 

departure from additivity in the data example in terms of differences in probabilities. It generates 

directly interpretable estimates and 95% confidence intervals for parameters including the 

interaction contrast (IC). Log binomial and logistic regression models detect no departure from 

multiplicativity in the data example. However, their results permit calculation of the “Relative 

Excess Risk Due to Interaction” (RERI), a measure of departure from additivity on a relative risk 

scale.   

 

The linear binomial model directly produces interpretable assessments of departures from 

additivity of effects and deserves wider use in research and in the teaching of epidemiology. 

Strategies exist to address the model’s limitations.   

 

 

1. Background 
 

Hypotheses related to biological interaction are often of interest in studies of clinical or 

population health.  Vanderweele and Knol (2014, p. 54) define biological interaction as an 

instance in which “two exposures physically interact to bring about the outcome.”  Rothman 

(2002, p. 171) states that “biologic interaction between two causes occurs whenever the effect of 

one is dependent on the presence of the other.” Rothman’s definition is closely allied with the 

concept of effect modification.   
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1.1 Biological interaction and statistical interaction 

Investigators detect interaction and effect modification by constructing statistical models. 

Rothman (2002, p.169) points out that “in statistics, the term ‘interaction’ is used to refer to 

departure from the underlying form of a statistical model.”  Certain statistical models are suited 

for detecting departures from additivity of effects, and others are suited for detecting departures 

from multiplicativity of effects. 

Researchers frequently hypothesize biological mechanisms that produce a non-additivity of 

effects when those effects are quantified as probabilities.  Rothman links “biological 

independence” with an additivity of effects and connects “biological interaction” with a 

departure from an additivity of effects. “Why is it,” Rothman asks, “that biological interaction 

should be evaluated as departures from additivity of effect” (Rothman, 2002, p. 178)?  By 2007, 

the STROBE statement regarded the response to Rothman’s rhetorical question to reflect a 

“consensus that the additive scale, which uses absolute risks, is more appropriate [than the 

multiplicative scale] for public health and clinical decision making”  (Vandenbroucke, von Elm, 

et al., 2007, p.817).   The authors of the STROBE statement remind investigators that “in many 

circumstances, the absolute risk associated with an exposure is of greater interest than the 

relative risk” and ask them to “consider translating estimates of relative risk into absolute risk for 

a meaningful time period” (p.825).  Vanderweele and Knol (2014, p. 37) remark, more pointedly, 

that “one reason why additive interaction is important to assess (rather than only relying on 

multiplicative interaction measures) is that it is the more relevant public health measure.” 

1.2 Additivity and multiplicativity of effects 
 

Although this paper presents ideas that align with this consensus, it avoids using the term 

“additive interaction.” Instead, we link the concept to statistical models that assess evidence of a 

departure from additivity of effects.  Spiegelman and Hertzmark (2005) describe the “binomial 

model for the risk difference,” which directly assesses departures from additivity of effects in 

terms of probabilities and differences in probabilities.  This model is also called the “binomial 

regression model” (Cheung 2007; Bieler et al., 2010).   Richardson et al. (2015) call it the “linear 

binomial model,” the term which this paper uses. 

 
In the linear binomial model, detection of statistical interaction constitutes direct evidence of a 

departure from additivity of effects. In contrast, the log binomial and logistic regression models 

assess additivity indirectly, when their estimates of relative risks or odds ratios are recombined to 

calculate statistics like the “Relative Excess Risk due to Interaction” (RERI).  

 

Similarly, instead of using the term “multiplicative interaction,” the paper links that concept to 

statistical models that assess evidence of departures from multiplicativity of effects.  Log 

binomial models estimate these effects in terms of relative risks, also called risk ratios, 

prevalence ratios (Spiegelman and Hertzmark 2005; Richardson et al., 2015) or prevalence 

proportion ratios.  Logistic regression models estimate effects in terms of odds and odds ratios.  

In the log binomial and logistic models, which employ log transformations of probabilities or of 

their corresponding odds, detection of statistical interaction constitutes direct evidence of a 

departure from multiplicativity among effects. Because the choice of statistical model affects the 
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interpretation of statistical interaction, Rothman (2002, p.170) prefers the term “effect measure 

modification” to “effect modification” or to “interaction.” 

 

1.3 Statistical models for binomial outcomes 
The linear binomial, log binomial and logistic regression models are all examples of generalized 

linear models.  Each treats the outcome as arising from a binomial distribution.  Each features a 

linear predictor structured as a sum of terms.  In this regard, all generalized linear models might 

be considered “additive.”  Accordingly, this paper does not refer to “additive or multiplicative 

models” but refers instead to statistical models that assess additivity or multiplicativity of effects.   

 

While the three models link a binomial outcome to a linear predictor, they are distinguished by 

the link functions they employ in the generalized linear model framework.  The linear binomial 

model uses the identity link, the log binomial model uses the log link, and the logistic regression 

model uses the logit link.  Thus, the linear binomial model operates directly on probabilities, 

while the others apply log transformations of the probabilities or of their corresponding odds.  

Because each model estimates a different effect measure, they differ in their ability to detect 

statistical interaction in a collection of data.   
 

Section 2 introduces a definition of additivity of effects that are quantified as probabilities and 

differences in probabilities. The additivity of two effects can be characterized as an equality of 

joint and independent effects and, equivalently, as a homogeneity of effects.  Interaction, which 

reflects a departure from additivity, can be characterized as an inequality between joint and 

independent effects, and as heterogeneity among effects.  We discuss two formal assessments of 

a departure from additivity: the interaction contrast, whose terms are probabilities, and the RERI, 

whose terms are relative risks. 

 

Section 3 introduces a data example, a widely cited example of biological interaction (Hammond 

et al. 1979), which features a dichotomous outcome, lung cancer mortality, and two dichotomous 

risk factors, occupational exposure to asbestos and cigarette smoking.  This section illustrates 

how a linear binomial model, which directly assesses additivity by generating estimates and 

testing hypotheses on probabilities and differences in probabilities, detects statistical interaction 

in these data.  It then illustrates how, applied to the same data, the log binomial and logistic 

regression models, which assess multiplicativity of relative risks or of odds ratios, find no 

evidence of statistical interaction.  The absence of statistical interaction does not point in this 

instance to the absence of biological interaction, but to a lack of departure from multiplicativity 

of effects.   

 

Section 4 summarizes the three models’ advantages and limitations for assessing additivity of 

effects.  The RERI’s wide use persists despite complications in its estimation, testing and 

interpretation.  In comparison, the linear binomial model produces estimates of effects, including 

the interaction contrast, that are readily interpretable.  The model can encounter problems with 

convergence, but strategies have been proposed to address those.   
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2.  Assessing additivity of effects that are quantified as probabilities and 

differences in probabilities 
 

Consider a comparison of the probability or “risk” of an outcome 𝑌 among individuals who are 

exposed or not exposed to one or both of two “risk factors,” 𝑋 and 𝑍. Then pxz, is a probability 

whose subscripts signify the probability or risk of the outcome 𝑌 at “levels” of 𝑋 and 𝑍. Table 1 

illustrates these probabilities. 

 

Table 1. Probabilities of an outcome (𝑌) at levels of two exposure or risk factors, X and Z 

____________________________________________________________________ 

____________________________________________________________________ 

                                                                    Z=1                                       Z=0 

                                                     (“exposed to factor Z”)    (“not exposed to factor Z”) 

_____________________________________________________________________ 

X=1 (“exposed to factor X”)                      p11                                         p10 

X=0 (“not exposed to factor X”)                p01                                         p00 

_____________________________________________________________________ 

 

2.1 Additivity defined as the equality of joint and independent effects 
Rothman (2002, p.178) states that the following equation “establishes additivity as the definition 

of biological independence.” 

 

𝑝11 −  𝑝00 = (𝑝10 − 𝑝00) + (𝑝01 −  𝑝00)   (Equation 1) 

 

Two exposures (X and Z) are biologically independent when the effect on Y of their joint and 

simultaneous effects (p11 − p00) is equal to the sum of the separate and independent effects of X 

(p10 − p00) and of Z (p01 − p00).    

 

A departure from additivity of effect, which Rothman considers evidence of biological 

interaction, is present if the joint and simultaneous effect of the two exposures differs from the 

sum of the effects of each exposure when considered separately.  Szklo (2004, p. 186) similarly 

states that “interaction occurs when the observed joint effect of X and Z differs from that 

expected on the basis of their independent effects.”      
 

2.2 Additivity defined as a homogeneity of effects 
Additivity can be defined equivalently as a homogeneity of effects.  The terms of Equation 1 can 

be reordered to obtain 
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𝑝11 − 𝑝01 = 𝑝10 − 𝑝00 ,      (Equation 2) 
 

which shows that additivity implies a homogeneity of effects.  Equation 2 states that the effect of 

X on Y is the same whether Z = 1 (p11 − p01) or Z = 0 (p10 − p00).  Additivity (the absence of 

interaction) implies that measures of association between Y and X are homogenous (do not 

differ) at levels of Z. 

 

Homogeneity of effects is reciprocal.  We can rearrange the probabilities in equation 2 and 

express them as: 

 

p11 − p10 = p01 − p00.   (Equation 3) 

 

Equation 3 states that the effect of Z on Y is the same at all levels of X, that is, whether X=1 

(𝑝11 − 𝑝10) or X=0 (𝑝01 − 𝑝00).   When effects of 𝑋 and 𝑍 are additive, the association between 

Y and X is homogenous at levels of Z, and the association between Y and Z is homogenous at 

levels of X. 

 

When the effects of X and Z are not additive, interaction is present.  The effect on Y of their joint 

and simultaneous effects is either larger, or smaller, than the sum of their separate and 

independent effects.  Equivalently, the effects of either X or Z on Y are heterogenous at levels of 

the other variable.  

 
Any of the three equations (1, 2 or 3) can be rearranged to arrive at any of the others.  Assessing 

homogeneity of effects, or assessing the equality of joint and independent effects, are 

algebraically equivalent ways to describe additivity. 

 

2.3 Assessing additivity of effects using probabilities: the interaction contrast (IC)  
Another arrangement of the terms in equation (1) is 

 

 (1) × 𝑝11 + (−1) × 𝑝10 + (−1) × 𝑝01 + (1) × 𝑝00 = 0  (Equation 4) 

 

This linear contrast formally tests the hypothesis that the effects on Y of X and Z are additive or, 

equivalently, that no interaction exists between X and Z.  Rothman refers to equation 4 as the 

“interaction contrast” (IC).  An appropriate statistical model can estimate the quantity on the left 

side of the equation, calculate its 95% confidence interval, and judge whether it differs from 

zero.   

 

 

2.4 Assessing additivity of effects using ratios: the RERI  
 

Reordering the terms in Equation 1 and dividing each by p00 yields:    

 

p11/p00 − p01/p00 − p10/p00 + 1 = 0.  

 

Recognizing that these ratios of probabilities are relative risks (𝑅𝑅), we obtain: 
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RR11 − RR01 − RR10 + 1 = 0.    (Equation 5) 

 

Rothman (1986) named the quantity on the left side of equation 5 the “Relative Excess Risk due 

to Interaction” (RERI).  Rothman and Greenland (1998) call it the “interaction contrast ratio” 

(ICR).  Hosmer and Lemeshow (1992) define it as “the proportion of disease among those with 

both exposures that is attributable to their interaction.”   Equation 5’s expression for the RERI 

can be restated: RR11 − 1 = (RR10 – 1) + (RR01 − 1).  This equation’s left side reflects the 

relative risk of experiencing the outcome in those exposed to the joint or simultaneous effects of 

both X and Z.  Its right side reflects the sum or additive effects of exposure to just one of the 

factors X and Z. 

 

The algebraic equivalence between equations 1 and 5 validates the assessment of additivity of 

effects using estimates of relative risks.  If equation 5 holds and the RERI is zero, we conclude 

that the effects of X and Z conform to additivity on a relative risk scale.  Evidence of inequality 

suggests a departure from additivity of effects, that is, evidence of interaction or effect 

modification on the relative risk scale.    

The STROBE statement advocated use of the RERI as a measure of departures from additivity of 

risk differences (Vandenbroucke, von Elm, et al., 2007, p.825). The RERI is commonly used in 

epidemiologic research to quantify departures from additivity that researchers regard as evidence 

of biological interaction.   

Under certain conditions (when the outcome is relatively rare in all strata defined by levels of X 

and Z, or when incidence density sampling is used to include non-cases from the underlying 

population), then odds ratios will approximate relative risks, and analogous equations will apply 

to estimates of odds ratios: OR11 − OR01 − OR10 + 1 = 0, or equivalently, OR11 − 1 =
 (OR10 − 1) + (OR01 − 1) (VanderWeele, 2013). 
 

 

 

3. Data example: lung cancer mortality among workers with different 

exposures to asbestos and smoking 

A study (Hammond et al.,1979) that compared the risk of mortality from lung cancer among 

17,800 asbestos workers in the US, and also among 73,763 men who were not exposed to 

asbestos, is widely used in epidemiology textbooks and teaching.  The study also recorded 

smoking status, and so participants displayed combinations of exposure to cigarette smoking and 

to asbestos.   

 

Appendix A contains the SAS program that created a dataset that closely approximates the 

features of the published data.  So that the dataset’s risk probabilities (reported as lung cancer 

deaths per 100,000) reflect the published ones, a smoking prevalence of 0.28 was assumed for 

both the asbestos workers and for the comparison group of unexposed workers.  The SAS 

program also produced Table 2. 
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Table 2. Lung cancer deaths (per 100,000 workers) among those with exposure to asbestos 

and/or cigarette smoking 

________________________________________________________________________ 

                                                                                 Asbestos Exposure 

                                       _____________________________________________________ 

Cigarette smoking         Asbestos Workers (n= 17800)     Comparison Group (n=73763) 

_____________________________________________________________________ 

Smokers                                      p11=601.9                             p10= 121.1      

Non-smokers                              p01=  54.6                              p00=  11.3      

________________________________________________________________________ 

 

3.1 The data example illustrates a departure from additivity of effects 
If the effects of asbestos exposure and cigarette smoking are additive, the expected effect of 

experiencing both exposures would equal the sum of the exposures’ separate effects (Equation 

1).  Following the notation introduced in Table 1 to define  p̂xz, where X denotes cigarette 

smoking (1 = smokers and 0 = nonsmokers) and Z denotes asbestos exposure (1=exposed and 0= 

not exposed), the estimated risk probabilities are: 

 

𝑝̂11 − 𝑝̂00 = 601.9 − 11.3 = 590.6 excess deaths per 100,000 people, attributable to 

joint effects of both exposures. 

 

𝑝̂10 − 𝑝̂00 = 121.0 − 11.3 = 109.7 excess deaths per 100,000 attributable to smoking by 

itself; 

 

𝑝̂01 − 𝑝̂00 = 54.6 − 11.3 = 43.3 excess deaths per 100,000 people, attributable to 

asbestos exposure by itself. 

 

The effect on lung cancer death attributable to dual exposure appears to exceed the sum of the 

exposures’ separate effects.  The interaction contrast for the data example: 𝑝11 − 𝑝10 − 𝑝01 +
𝑝00 indicates that the risk of lung cancer death in those who experience both exposures exceeds, 

by about 437.6 deaths per 100,000, the sum of the separate risks from smoking or from asbestos 

exposure.  Section 3.3 illustrates a formal test of this departure from additivity of effects.  

 

Calculated for the data example, the RERI, which quantifies additivity of effects on the relative 

risk scale, RR11 − RR01 − RR10 + 1 = [601.9/11.3] - [54.6/11.3] - [121.0/11.3] +1 = 38.7.  

Section 4.1 discusses approaches to formal testing of the RERI. 
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3.2 The linear binomial model, which assesses effects measured as probabilities and 

differences in probabilities (risk differences), detects a departure from additivity of 

effects in these data. 

 
In 2.1, we introduced a definition of biological independence (Equation 1) and, in 2.3, linked it 

to Rothman’s “interaction contrast” (Equation 4), which amounts to a formal test of additivity.  

We can estimate the interaction contrast in the linear binomial model described by Spiegelman 

and Hertzmark (2005) and by Richardson and colleagues (2015), who employ it as a final step in 

a marginal structural model.  The linear binomial model estimates effects in terms of 

probabilities and differences in probabilities:  

 
P(Y = 1) = β0 + β1X + β2Z + β3XZ      (Equation 6) 

 

Recalling that X and Z take values of 1 for “exposure” and 0 for “no exposure”, then 

𝑝̂00 = 𝛽0 

𝑝̂10 − 𝑝̂00 = (𝛽0 + 𝛽1) − 𝛽0 = 𝛽1 

𝑝̂01 − 𝑝̂00 = (𝛽0 + 𝛽2) − 𝛽0 = 𝛽2 

𝑝̂11 − 𝑝̂00 = (𝛽0 + 𝛽1 + 𝛽2 + 𝛽3) − 𝛽0 = 𝛽1 + 𝛽2 + 𝛽3 

 

Substituting these expressions into Equation 1, which defines additivity of effects,  

𝑝11 −  𝑝00 = (𝑝10 − 𝑝00) + (𝑝01 −  𝑝00)   

𝛽1 + 𝛽2 + 𝛽3 = 𝛽1 + 𝛽2 

 

In the linear binomial model, effects are additive if 𝛽3, the regression coefficient associated with 

the product or interaction term, is equal to zero. 

 

Substituting the expressions into Equation 4, we see that the model’s estimate for β3 is itself an 

estimates of the interaction contrast: 

 

p11 − p10 − p01 + p00 =  (β0 + β1 + β2 + β3) −  (𝛽0 + 𝛽1) − (𝛽0 + 𝛽2) + 𝛽0 = 𝛽3 

 

In the linear binomial model, estimation of the interaction contrast is equivalent to estimation of 

the X*Z interaction.  Both provide direct tests of additivity.  Evidence against the hypothesis that 

β3 =0 or, equivalently, that the interaction contrast is equal to zero, is evidence of a departure 

from additivity.   

 

Appendix B illustrates the construction of the linear binomial model using SAS PROC 

GENMOD (Spiegelman and Herzmark, 2005; Richardson et al., 2015). The syntax includes a 

MODEL statement that identifies the independent variables smk (smoking status) and asbestos 

(asbestos exposure status) and includes smk*asbestos, the interaction between smoking status 

and asbestos exposure.  Options in the MODEL statement specify that the outcome (lung cancer) 

follows a binomial distribution, and link the outcome directly (through an identity link, not 

through a log or logit transformation) to the linear predictor on the right side of Equation 6.  An 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Richardson%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=26228585
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ESTIMATE statement defines the interaction contrast’s four coefficients (1 − 1 − 1   1), 

estimates the magnitude of non-additivity, and tests the null hypothesis that non-additivity is 

equal to zero.  Evidence against the null hypothesis suggests “non-additivity” or interaction.  

 

The model’s point estimates for the number of deaths per 100,000 workers, generated using an 

LSMEANS statement and presented in Table 3, and are equal to those reported in Table 2.   

Table 3 also reports the model’s estimates (and 95% CI) for regression coefficients.  Two of 

these coefficients estimate the effects on lung cancer mortality of smoking among those not 

exposed to asbestos (β1) and of asbestos exposure in non-smokers (β2).  The model’s estimates 

for β1 and β2 are equal to corresponding effects reported in 3.1. 

 

Table 3. Absolute risks (and risk differences) for death from lung cancer (per 100,000 workers) 

for those with exposure to asbestos and/or cigarette smoking, estimated by linear binomial model 

________________________________________________________________________ 

                 smk       asbestos      Estimate         Deaths per 100,000         95% CI on estimate 

                                                                                                                ________________ 

                                                                                                                 Lower         Upper 

________________________________________________________________________ 

 p11          1 (yes)     1 (yes)       0.006019              601.926                 387.183      816.669 

 p10          1 (yes)     0 (no)        0.001210              121.048                   73.627      168.469 

 p01          0 (no)       1 (yes)       0.000546                54.619                    14.169        95.070 

 p00          0 (no)       0 (no)        0.000113                11.298                      2.258        20.337 

 

β1            smk (𝑝̂10 − 𝑝̂00)         0.001098              109.750                    61.475      158.025 

β2        asbestos  (𝑝̂01 − 𝑝̂00)     0.000433                43.322                      1.873        84.770 

β3            smk*asbestos             0.004376              437.557                 213.768       661.345  

IC            p11-p10-p01+p00             0.004376              437.557                 213.768       661.345  

________________________________________________________________________ 

The coefficient β3 , which is associated with the smk*asbestos interaction, is equivalent to the 

interaction contrast.  The linear binomial model produces identical inference for β3 and for the IC 

(estimate: 437.6 deaths per 100,000; 95% CI: 213.8, 661.3; p=0.00012702).  Both estimates 
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match the calculation for the IC illustrated in Section 3.1.  The consistency between the p values 

generated for the IC by the ESTIMATE statement, and for the smk*asbestos interaction by the 

MODEL statement, verifies that these two statistics offer equivalent tests of the null hypothesis 

that the effects of smoking and asbestos exposure are additive.  Figure 1 illustrates the 

heterogeneity of the effects of smoking on lung cancer mortality in groups defined by asbestos 

exposure.  

 

Figure 1.  Biological interaction between asbestos exposure and smoking, illustrated as a non-

additivity or heterogeneity of effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B contains the SAS data and procedure steps that produced Table 3 and Figure 1. 

 

3.3 Log binomial and logistic regression models, which assess effects measured as 

relative risks or odds ratios, do not detect a departure from multiplicativity of 

effects in these data. 
 

In contrast to the linear binomial model, models that employ logarithmic transformations of 

probabilities (log binomial models) or their corresponding odds (logistic regression models) 

assess departures from multiplicativity of effects.  Multiplicativity of effects is defined in a 

manner analogous to the definition of additivity of effects.  The effects of two causal factors (X 

and Z) on an outcome (Y) are multiplicative if their joint effects are equal to the product of their 

separate and independent effects.  Under this definition, when effects are multiplicative, relative 

risks will conform to the relationship: RRXZ = RRX × RRZ, and odds ratios will conform to the 

relationship: ORXZ = ORX × ORZ. A log binomial model  

 

ln[P(Y = 1)] = β0 + β1X + β2Z + β3XZ,  

 

can estimate and test the multiplicativity of relative risks.   
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Appendix C shows in detail how, after restating the log binomial model as: 

 

P(Y = 1) = exp (β0 + β1X + β2Z + β3XZ). 

 

it follows that: RRXZ = exp(β1X + β2Z + β3XZ); RRX = exp(β1X);  RRZ = exp(β2Z). 
 

If there is no departure from multiplicativity among relative risks, then: 

 

RRXZ = RRX RRz 

 

exp(β1X + β2Z + β3XZ) = exp(β1X)exp(β2Z) =  exp(β1X + β2Z). 

 

This equality holds only if 𝛽3 = 0, where 𝛽3 is the regression coefficient associated with the 

product term.  If the log binomial model’s estimate of 𝛽3, or its test of the null hypothesis 𝛽3 = 0 

suggests that 𝛽3 ≠ 0, that constitutes evidence of a departure from multiplicativity among the 

relative risks. 

 

Similarly, the logistic regression model 

 

ln[P(Y = 1) P(Y = 0)⁄ ] = β0 + β1X + β2Z + β3XZ 

estimates and tests the multiplicativity of odds and odds ratios.  Appendix C provides an 

extended explanation of how the inclusion of product terms in the log binomial and logistic 

regression models provides direct tests of the null hypothesis that there is no departure from 

multiplicativity of effects.   

 

The log binomial finds no evidence of statistical interaction between smoking and asbestos 

exposure in the data example (p=0.9637).  A depiction of the model’s estimates (Figure 2) shows 

no heterogeneity nor departure of multiplicativity of effects.  Appendix D shows the SAS data 

and procedure steps that generated the log binomial model and the depiction of its estimates in 

Figure 2.  
 

Figure 2.  Predicted log probabilities illustrate a lack of departure from multiplicativity of effects 

in the log binomial model. 
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Similarly, a logistic regression model, which employs a logit transformation of the outcome’s 

probability, finds no evidence of departure from multiplicativity of effects.  The model fails to 

reject the null hypothesis that there is no statistical interaction between smoking and asbestos 

exposure (p=0.9581).  A depiction of the model’s estimates (Figure 3) shows no heterogeneity of 

effects.  Appendix E shows the SAS data and procedure steps that generated the logistic 

regression model and the depiction of its estimates in Figure 3.  

 

Figure 3.  Predicted log odds illustrate a lack of departure from multiplicativity of effects in the 

logistic regression model. 
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4. Choosing among statistical models 

 
Although neither the log binomial nor the logistic regression model detects statistical interaction 

in the data example, this is not evidence of a lack of biological interaction.  The finding 

underscores, however, the importance of constructing a statistical model that estimates an effect 

measure that is relevant to the scientific question.  The three statistical models discussed here 

each estimate different effect measures, and each has advantages and limitations.   

 

 

4.1 Choosing log binomial or logistic regression models that generate estimates of 

the RERI  
 

Although the log binomial and logistic regression models test statistical interactions that relate to 

departures from a multiplicativity of effects, they are widely used in epidemiology to assess 

biological interaction that is hypothesized to manifest as a departure from additivity.  The RERI, 

which assesses departures from additivity of effects on a relative risk or odds ratio scale 

(Vandenbroucke,  von Elm, Altman, et al., 2007), is generated from these models’ estimates.  

 

However widespread, use of the RERI has disadvantages.  Because it is constructed from ratios, 

the RERI cannot be interpreted as the number of excess deaths attributable to exposure to both 

smoking and asbestos.  The RERI of 38.7, calculated for the data example, lacks the ease of 

interpretation of the IC’s estimate, calculated in the linear binomial model, of 437.6 excess 

deaths per 100,000 (Table 3.)    

 

A second disadvantage of relying on the RERI to assess departures from additivity involves the 

difficulty in obtaining standard errors with which to construct confidence intervals for its 

estimate, or to test hypotheses related to it.  An influential approach, introduced by Hosmer and 

Lemeshow (1992), estimates the RERI using logistic regression and obtains standard errors for 

its estimates using the delta method.  SAS syntax for their approach is provided by Andersson et 

al. (2005), and by Richardson and Kaufman (2009), who construct a “linear odds ratio model” 

using SAS PROC NLMIXED.  Richardson and Kaufmann (2009) recommend bootstrapping as 

an alternative approach for obtaining confidence intervals. An empirical 95% confidence interval 

on the RERI, calculated for these data using 500 bootstrap samples, is 15.9, 132.6.  However, the 

bounds for the RERI’s confidence intervals present the same challenges to interpretation as the 

estimate itself. 

 

 

4.2 Choosing the linear binomial model that directly estimates risks and risk 

differences 
 

Logistic regression is widely used in epidemiology to study binomial outcomes in part because 

its use of the logit link, which is the canonical link for a binomial response, affords desirable 

statistical properties. Among these is logistic regression’s reliability in converging on parameter 

estimates.  Models that use other link functions can encounter problems with convergence. Zou 
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(2004) and Spiegelman and Herzmark (2005) point to the problem of convergence in the log 

binomial model and advocate use of a modified Poisson model to address the problem when it 

arises.   

 

The linear binomial model, which uses the non-canonical identity link, can also fail to converge 

on solutions or estimates.  This limitation interferes with the model’s wider acceptance, despite 

its suitability for assessing additivity of effects through its direct estimation of probabilities, 

differences in probabilities and of the interaction contrast.   

 

To address the issue of non-convergence, Spiegelman and Herzmark (2005) advocate modifying 

the linear binomial model so that it retains the identity link but assumes that the outcome follows 

a Poisson distribution.  While this approach may ensure convergence, imposing the Poisson 

assumption causes the model to mis-specify the variance of a binomial outcome.  This 

intentional mis-specification of the outcome’s distribution reduces the efficiency of the model’s 

standard errors, and of the hypothesis tests and confidence intervals that are based on those 

standard errors.  Accordingly, Spiegelman and Herzmark (2005) recommend calculating 

standard errors that are robust despite misspecification.   Appendix B contains the syntax for 

these modifications, including the incorporation of the REPEATED statement in SAS PROC 

GENMOD to initiate the GEE estimation of robust standard errors.   

 

Richardson et al. (2015) do not suggest modifying the linear binomial model but, because they 

apply the model to weighted data, they also advocate the calculation of robust standard errors.  

Alternatively, the widespread availability of computing capacity makes attractive the 

bootstrapping of confidence intervals for parameter estimates, including the interaction contrast, 

as Richardson and Kaufmann (2009) have advocated for the RERI. 

 

Cheung (2007) addresses non-convergence by proposing a modified least squares (MLS) model 

that, like the linear binomial model, uses an identity link.  Like the approaches discussed above, 

Cheung’s calculates robust standard errors.  In contrast, Cheung’s approach avoids specifying the 

outcome’s assumed distribution by using ordinary least squares (OLS) instead of maximum 

likelihood estimation (MLE).  This strategy cures the problem of non-convergence but does not 

guarantee that estimated probabilities will be in the logical range from 0 to 1.    

 

5. Conclusions 
 

Biological interaction is often hypothesized to manifest itself as a non-additivity of effects 

quantified as probabilities or absolute differences in probabilities.  Applied to a data example 

that is widely used in epidemiology education to illustrate biological interaction, a linear 

binomial model detects statistical interaction while logistic and log binomial models do not.   

 

The result affirms the consensus that biological interaction should generally be assessed as a 

departure from an additivity of effects.  Statistics like the RERI, which are widely used in 

epidemiology, assess additivity on a relative risk scale.  The linear binomial model produces 

estimates that, in contrast with the RERI and other ratio measures, are directly interpretable as 

probabilities and differences in probabilities.   
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Researchers can construct the linear binomial model, and obtain estimates and confidence 

intervals for the interaction contrast and other effects, using available software for generalized 

linear models.  The model deserves wider use in research and judicious use in the teaching of 

epidemiology.  The linear binomial model can encounter problems with convergence, but 

strategies exist to address this limitation. 
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Appendix 

 

Appendix A. SAS program that created data example and produced Table 2 

 
data one; 

  array asbn (2) (73763 17800); /*n in published study*/ 

  array rate (4) (11.3 122.6 58.4  601.6);  

                     /*lung ca deaths per 100k in published study*/ 

  smokeprev=0.28; 

  do asbestos=0 to 1; 

    do smk=0 to 1; 

   do lungcadeath=0 to 1; 

      mult=rate [2*asbestos + smk +1] / 100000; 

      count1=asbn[asbestos+1] * 

         (abs((1-smk)-smokeprev)) * 

               (abs((1-lungcadeath)-mult))  ; 

      count=round(count1,1); 

      output; 

        end; 

    end; 

  end; 

keep asbestos smk lungcadeath count; 

run; 

proc sort data=one (keep=asbestos smk lungcadeath count) out=two; 

  by descending asbestos descending smk descending lungcadeath; 

run; 

 

/*version of dataset with individual observations*/ 

data long; 

  set two; 

  do i=1 to count; 

    id+1; 

    output; 

  end; 

run; 

 

proc format; 

  value smkf 1="Smokers" 0="Non-smokers"; 

  value gpf   1="Asbestos Workers (n= 17800)" 

              0="Comparison Group (n=73763)"; 

  value death 1="Deaths due to lung CA"  

              0="Alive or dead due to other causes"; 

run; 

 

/*Table 2. Lung cancer deaths (per 100,000 workers) among those with exposure 

to asbestos and/or cigarette smoking*/ 

proc freq data=two order=data; 

  weight count; 

  tables asbestos*smk*lungcadeath / nocol nopct outpct out=three; 

  format smk smkf. asbestos gpf. lungcadeath death.; 

run; 

 

data four; 

  set three; 

  perhunthou=pct_row*1000; 
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run; 

 

proc report nowd data=four; 

  where lungcadeath=1; 

  columns smk asbestos, perhunthou; 

  define smk / group "Cigarette smoking" format=smkf. order=data; 

  define asbestos / across "Asbestos Exposure" format=gpf. order=data; 

  define perhunthou / analysis '' format=6.2; 

run; 
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Appendix B.  SAS steps that construct the linear binomial model and produce Table 3 and 

Figure 1 

 

/*linear binomial model (after Spiegelman and Herzmark, 2005)   */  

proc genmod data=long descending; 

  class smk (ref=first) asbestos (ref=first)  ; 

  model lungcadeath = smk asbestos smk*asbestos 

          / link=identity dist=bin type3 wald ;   

  lsmeans smk*asbestos / cl; 

  ods output lsmeans=lsmeans estimates=estimates parameterestimates=betas                

modelanova=type3; 

  estimate "IC" smk*asbestos 1 -1 -1 1; 

run; 

 

/*linear binomial model that uses robust standard errors as advocated by 

Richardson et al., 2015*/ 

proc genmod data=long descending; 

  class smk (ref=first) asbestos (ref=first) id; 

  model lungcadeath = smk asbestos smk*asbestos 

          / link=identity dist=bin type3 wald ; 

  repeated subject=id / type=ind; 

  lsmeans smk*asbestos / cl; 

  ods output lsmeans=lsmeans estimates=estimates parameterestimates=betas 

modelanova=type3; 

  estimate "IC" smk*asbestos 1 -1 -1 1; 

run; 

 

/*modification of linear binomial model advocated by Spiegelman and Herzmark 

(2005) for instances when convergence fails*/  

proc genmod data=long descending; 

  class smk (ref=first) asbestos (ref=first) id; 

  model lungcadeath = smk asbestos smk*asbestos 

          / link=identity dist=poisson type3 wald ;   

  repeated subject=id / type=ind; 

  lsmeans smk*asbestos / cl; 

  ods output lsmeans=lsmeans estimates=estimates parameterestimates=betas                

modelanova=type3; 

  estimate "IC" smk*asbestos 1 -1 -1 1; 

run; 

 

 

/*Table 3*/ 

/*Estimates for tabulated risks*/ 

data mortality; 

  set lsmeans; 

  mortality=estimate*100000; 

  ucl=upper*100000; 

  lcl=lower*100000; 

run; 

proc print noobs data=mortality; 

  var smk asbestos estimate mortality lcl ucl; 

run; 

 

/*estimate for interaction contrast*/ 

data ic; 

  set estimates; 
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  ic=meanestimate*100000; 

  ic_lcl=meanlowercl*100000; 

  ic_ucl=meanuppercl*100000; 

run; 

proc print noobs data=ic; 

  var label meanestimate  ic ic_lcl ic_ucl probchisq; 

  format meanestimate 9.6 probchisq 12.8 ; 

run; 

 

/*estimates of regression coefficients, showing that they 

reflect excess deaths*/ 

data beta2; 

  set betas (where=(df=1)); 

  excessdeaths=estimate*100000; 

  ucl=upperwaldcl*100000; 

  lcl=lowerwaldcl*100000; 

run; 

proc print noobs data=beta2; 

  var parameter estimate excessdeaths lcl ucl probchisq; 

  format estimate 9.6 probchisq 12.8; 

run; 

 

/*Figure 1. The linear binomial model’s predicted  

  Probabilities illustrate a departure from additivity.*/ 

proc template; 

  define style styles.mystyle; 

  parent=styles.default; 

    class graphbackground / color=white; 

    style GraphData1 from GraphData1 / 

          contrastcolor=black linestyle=1; 

    style GraphData2 from GraphData2 / 

          contrastcolor=black linestyle=2; 

  end; 

run; 

ods html style=styles.mystyle; 

proc sgplot data=mortality; 

  series y=mortality x=smk / group=asbestos name="one" 

            groupdisplay=cluster clusterwidth=0.05 

            markers markerattrs=(symbol=squarefilled size=10); 

  highlow x=smk high=ucl low=lcl / group=asbestos 

            groupdisplay=cluster clusterwidth=0.05 

            type=line lineattrs=(pattern=1) lowcap=serif highcap=serif; 

  xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold); 

  yaxis label="Lung cancer deaths per 100,000" 

        labelattrs=(size=14 weight=bold) 

        valueattrs=(size=14 weight=bold); 

  format smk smkf. asbestos gpf.; 

  keylegend "one" / title="" location=inside down=2 position=topleft 

             valueattrs=(size=12 weight=bold) ; 

run; 

ods html close;  
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Appendix C.  Assessing departures from multiplicativity of effects in statistical models that 

use relative risks or odds ratios as their effect measures 

 

We define multiplicativity of effects in a manner analogous to the way we defined additivity of 

effects.  The effects of two exposures (𝑋 and 𝑍) on an outcome (𝑌) are multiplicative if their 

joint effects are equal to the product of their separate and independent effects.  When effects are 

multiplicative, we can predict that: 

 

𝑃(𝑌 = 1|𝑋 = 1, 𝑍 = 1)

𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 0)
=

𝑃(𝑌 = 1|𝑋 = 1, 𝑍 = 0)

𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 0)
×

𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 1)

𝑃(𝑌 = 1|𝑋 = 0, 𝑍 = 0)
 , 

 

or, equivalently, 𝑅𝑅𝑋𝑍 = 𝑅𝑅𝑋 × 𝑅𝑅𝑍.  We can similarly compare the joint and independent 

effects of two exposures using the odds ratio scale: 𝑂𝑅𝑋𝑍 = 𝑂𝑅 × 𝑂𝑅𝑍.  

 

These equations define null hypotheses that propose that there is no departure from 

multiplicativity of effects.  Evidence against these equalities suggests a departure from 

multiplicativity of effects.   

 

Log binomial models, which estimate relative risks as the measure of association, can test the 

null hypothesis that 𝑅𝑅𝑋𝑍 = 𝑅𝑅𝑋 × 𝑅𝑅𝑍.   Logistic regression models, which estimate odds 

ratios, can test the null hypothesis that 𝑂𝑅𝑋𝑍 = 𝑂𝑅𝑋 × 𝑂𝑅𝑍 .  In either model, the inclusion of 

product terms provides direct tests of the null hypothesis that there is no departure from 

multiplicativity of effects. 

 

Testing for departures from multiplicativity of effects in the log binomial model 

 

In the log binomial model: 

ln[𝑃(𝑌 = 1)] = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍,  

or equivalently,  

𝑃(𝑌 = 1) = exp (𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍). 

 

The model yields expressions for relative risks or, depending on the sampling scheme, a 

prevalence proportion ratio. These are ratios of two exponentiated linear functions: 

 

𝑅𝑅𝑋𝑍 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍)/𝑒𝑥𝑝(𝛽0) = 𝑒𝑥𝑝(𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍), 

 

𝑅𝑅𝑋 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋)/𝑒𝑥𝑝(𝛽0) = 𝑒𝑥𝑝(𝛽1𝑋), 

 

𝑅𝑅𝑍 = 𝑒𝑥𝑝(𝛽0 + 𝛽2𝑍) / 𝑒𝑥𝑝(𝛽0) =  𝑒𝑥𝑝(𝛽2𝑍), 

 

Therefore, we have 

𝑅𝑅𝑋𝑅𝑅𝑍 = 𝑒𝑥𝑝(𝛽1𝑋)𝑒𝑥𝑝(𝛽2𝑍) = 𝑒𝑥𝑝(𝛽1𝑋 + 𝛽2𝑍). 
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If there is no departure from multiplicativity among relative risks, then: 

𝑅𝑅𝑋𝑍 = 𝑅𝑅𝑋 𝑅𝑅𝑧 and  

𝑒𝑥𝑝(𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍) = 𝑒𝑥𝑝(𝛽1𝑋 + 𝛽2𝑍). 

 

Note that the equality holds if 𝛽3 = 0, where 𝛽3 is the regression coefficient associated with the 

product term.  The log binomial model produces a test of the hypothesis 𝐻0: 𝛽3 = 0. Evidence 

that 𝛽3 ≠ 0 leads us to reject 𝐻0 and suspect a departure from multiplicativity among the relative 

risks. 

 

 

Testing for departures from multiplicativity of effects in the logistic regression  model 

 

Logistic regression models apply similar logic and similar algebra to assess multiplicativity 

among odds ratios.  The logistic regression model is of the form:  

ln
𝑃(𝑌=1)

𝑃(𝑌=0)
= 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍, 

 

so that odds are expressed as 

 

 
𝑃(𝑌=1)

𝑃(𝑌=0)
= exp(𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍) = 𝑒𝛽0𝑒𝛽1𝑋𝑒𝛽2𝑍𝑒𝛽3𝑋𝑍                (A) 

 

With respect to odds, the logistic regression model’s estimates are multiplicative.  Its estimated 

coefficients relate (after exponentiation) to an “𝑒𝛽-fold difference” in the odds of the outcome 

for a “one-unit” difference in a predictor variable.  Similarly, coefficients estimated in a log 

binomial model predict, after exponentiation, the fold-difference in an outcome’s probability 

associated with a “one-unit difference in a predictor variable. 

 

If there is no departure from multiplicativity among odds ratios, then 𝑂𝑅𝑋𝑍 = 𝑂𝑅𝑋 × 𝑂𝑅𝑍 , 

which implies 

 
 exp (𝛽0+𝛽1×1+𝛽2×1+𝛽3×1×1)

exp (𝛽0+𝛽1×0+𝛽2×0+𝛽3×0×0)
=

 exp (𝛽0+𝛽1×1+𝛽2×0+𝛽3×1×0)

exp (𝛽0+𝛽1×0+𝛽2×0+𝛽3×0×0)
×

 exp (𝛽0+𝛽1×0+𝛽2×1+𝛽3×0×1)

exp (𝛽0+𝛽1×0+𝛽2×0+𝛽3×0×0)
. 

 

This equality simplifies to  

exp(𝛽1 + 𝛽2 + 𝛽3) = exp(𝛽1 + 𝛽2). 
 

The equality holds only if 𝛽3 = 0, where 𝛽3 is the regression coefficient associated with the 

product term.  The logistic regression model produces a test of the hypothesis 𝐻0: 𝛽3 = 0. 

Evidence that 𝛽3 ≠ 0 leads us to reject 𝐻0 and suspect a departure from multiplicativity among 

the odds ratios. 
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Appendix D.  SAS data and procedure steps that generated the log binomial model and the 

depiction of its estimates in Figure 2.  
 
proc genmod data=long descending; 

  class smk (ref=first) asbestos (ref=first)  ; 

  model lungcadeath = smk asbestos smk*asbestos 

          / link=log dist=bin type3 wald lrci; 

  lsmeans smk*asbestos / cl; 

  ods output lsmeans=lsmeans ; 

run; 

 

ods html style=styles.mystyle; 

proc sgplot data=lsmeans; 

  series y=estimate x=smk / group=asbestos name="one" 

            groupdisplay=cluster clusterwidth=0.05 

            markers markerattrs=(symbol=squarefilled size=10); 

  highlow x=smk high=upper low=lower / group=asbestos 

            groupdisplay=cluster clusterwidth=0.05 

            type=line lineattrs=(pattern=1) lowcap=serif highcap=serif; 

  xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold); 

  yaxis label="ln[p(Death from lung cancer)]" 

        labelattrs=(size=14 weight=bold) 

        valueattrs=(size=14 weight=bold); 

  format smk smkf. asbestos gpf.; 

  keylegend "one" / title="" location=inside down=2 position=topleft 

             valueattrs=(size=12 weight=bold) ; 

run; 

ods html close; 
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Appendix E.  SAS data and procedure steps that generated the logistic model and the 

depiction of its estimates in Figure 3.  

 

proc genmod data=long descending; 

  class smk (ref=first) asbestos (ref=first)  ; 

  model lungcadeath = smk asbestos smk*asbestos 

          / link=logit dist=bin type3 wald lrci; 

  lsmeans smk*asbestos / cl; 

  ods output lsmeans=lsmeans ; 

run; 

 

ods html style=styles.mystyle; 

proc sgplot data=lsmeans; 

  series y=estimate x=smk / group=asbestos name="one" 

            groupdisplay=cluster clusterwidth=0.05 

            markers markerattrs=(symbol=squarefilled size=10); 

  highlow x=smk high=upper low=lower / group=asbestos 

            groupdisplay=cluster clusterwidth=0.05 

            type=line lineattrs=(pattern=1) lowcap=serif highcap=serif; 

  xaxis values=(0 1) label=" " valueattrs=(size=14 weight=bold); 

  yaxis label="Log odds of death from lung cancer" 

        labelattrs=(size=14 weight=bold) 

        valueattrs=(size=14 weight=bold); 

  format smk smkf. asbestos gpf.; 

  keylegend "one" / title="" location=inside down=2 position=topleft 

             valueattrs=(size=12 weight=bold) ; 

run; 

ods html close; 
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